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ABSTRACT 

 

The aim of the project was to produce a sort of miniature Vedic mathematics version of 

Euclid's 'Elements', covering much less ground than the 'Elements' and doing so with greater 

speed and ease than Euclid achieved.  

 

This task occupies three books; they are: 'Geometry for an Oral Tradition', 'The Circle 

Revelation' & 'Eight Essays on Geometry for an Oral Tradition'. This last book will hopefully 

be available later in 2016, free online 

 

The paper 'A Much-needed Innovation in Geometry' is included because it shows how a 

Vedic approach helped formulate the foundations of 'Geometry for an Oral Tradition'. 

 

A difficulty in the project was that for some one and a half centuries it has been known that 

the foundations of Euclid's 'Elements' are flawed. Putting this right is a major contribution of 

the project. 

 

Reformulation of the foundations of geometry is done in two stages. First there is the 

'Geometry for an Oral Tradition' (provisional) version, which makes use of a single axiom 

where Euclid needed ten. 

 

Then, in the 'Eight Essays on Geometry for an Oral Tradition', the sole 'Geometry for an Oral 

Tradition' axiom is proved using two principles. The result is demonstrably rock-solid 

foundations for geometry.  

 

NOTE The book 'Eight Essays on Geometry for an Oral Tradition' will hopefully be available 

later in 2016, free online 
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The Project is to produce a much-reduced Vedic mathematics version of 
Euclid's Elements, covering far less ground than Euclid does and doing 
so with greater speed and efficiency. 
 
  
 
Three books contribute to the Project; what they each 
contribute is explained in the present paper. 
 
  
 



The first book, Geometry for an Oral Tradition, states and proves theorems as far as elementary 

properties of a circle. Its style is close to Euclid’s in his book the Elements, making it easier to relate 

to the Elements. The drawback is that the formality of presentation makes both for a harder and a 

slower job in following it. 
 
  
 
The second book, The Circle Revelation, re-presents the material of Geometry for an Oral Tradition 

informally. It is written for schoolchildren. An adult can read this material in a few hours - little 

enough time, since the book presents a short course in geometry! 
 
  
 
There are a few points to be made before explaining the contribution of 
the third book. 
 
In the second half of the 19th century it became apparent that Euclid’s 
foundations are inadequate. The Elements is based on ten axioms, which 
traditionally had been accepted on the grounds of being self-evident. 
But this consensus fell apart when it was discovered that being 
apparently self-evident  is no guarantee of the truth of a statement. 
 
  
 
The status of Euclid’s axioms plummeted to being assumptions, generally (more on this later). 
 
  
 
It cannot be acceptable to base a fundamental subject such as geometry on a set of assumptions. 
 
  
 
The first step in sorting this matter out is taken in Geometry for an Oral Tradition, which, instead of 

Euclid’s ten axioms relies on a single axiom, namely, magnitudes are unchanged by motion. (The 

term postulate is used in Geometry for an Oral Tradition, rather than axiom, a postulate being 

defined there as an assumption made for the purpose of the study.) However, relying on even one 

assumption fails to set the subject on terra firma. 
 
The third book, Eight Essays on Geometry for an Oral Tradition, eliminates this single axiom 

(postulate) by using two well-supported principles to prove it, as we show next. The result is rock-

solid foundations. 
 
PROOF OF THE GEOMETRY FOR AN ORAL TRADITION POSTULATE 
 
To be proved. Magnitudes are unchanged by motion. 
 
Given.  
Principle 1 Once completed, a figure in a plane at rest remains unchanged. 
Principle 2 If any two planes are in relative motion, either of them can 
serve as our standard of rest. That is to say, all states of rest and 
motion are relative. 
 
Proof  



Calling the two relatively moving planes A and B, let us first treat 
plane A as our standard of rest. [By Principle 2] 
Then a figure drawn in plane A remains unchanged [by Principle 1], 
and so do its magnitudes. 
Now, instead, let plane B serve as our standard of rest. 
Then plane A is in motion relative to plane B, 
But we have just shown that the magnitudes in plane A remain unchanged. 
Therefore the motion of the magnitudes in plane A relative to plane B 
does not change them. 
That is, magnitudes are unchanged by motion. QED. 
 
Now we come to a question. 
 
WHY HAVE SOUND FOUNDATIONS NOT BEEN FOUND BEFORE? 
 
Judging by attempts which have been made to sort the matter out, the belief has been that, since 

Euclid’s axioms are unsatisfactory the need is to find more satisfactory axioms. This amounts to 

replacing one set of assumptions by another set of assumptions. Rock-solid foundations are not 

obtainable in this way. (An attempt to provide more satisfactory axioms is discussed in Ref. 5.) 
 
Let us take a closer look at some of Euclid’s axioms, first covering ground also useful to us in another 

way as we do so.  
 
GROUNDS FOR ACCEPTING A STATEMENT 
 
1) It has been proved. 
 
2) There is adequate evidence for it. 
 
3) It is self-evident, and accepted as an axiom. 
 
4) It is an assumption. 
 
Re the second point above, consider the first three of Euclid’s  postulates. They are as follows. 
 
Let the following be postulated:  
 
Postulate 1.  To draw a straight line from any point to any point. 
Postulate 2. To produce a finite straight line continuously in a straight line. 
Postulate3. To describe a circle with any centre and distance. 
 
Euclid does not say that he is using a straight edge and compasses; however, these first three 

postulates refer to what you can do with them, as anyone familiar with these instruments will be 

aware. What is being relied on here is evidence obtained from use of a straight edge and compasses. 
 
Euclid gives two more postulates and five common notions (note that the Oxford World 

Encyclopedia calls these postulates and assumptions respectively). These seven are not supported 

by evidence, and so, since being self-evident is no longer considered to be grounds for accepting 

a statement we are obliged to treat them as assumptions. That is to say, instead of being soundly 

based Euclid’s Elements rests on seven assumptions (plus three postulates which are well-

supported by evidence). (Essay 7 of the Eight Essays On Geometry for an Oral Tradition 

considers this in more detail.)  
 



The other point covered by the above analysis is that being adequately supported by evidence is 

grounds for accepting a statement, and this applies to Principles 1 and 2 used in the proof given 

above. (The evidence is spelt out in Essay 6 of the Eight Essays On Geometry for an Oral 

Tradition.) 

 

So much for the three books of the title; now for the paper. 
 
WHAT THE PAPER A MUCH-NEEDED INNOVATION IN GEOMETRY CONTRIBUTES 
 
It explains how a Vedic mathematics approach proved helpful in formulating the foundations 

for Geometry for an Oral Tradition, in various ways. These include: 
  
1) Having no more than a handful of geometry proofs initially (from Tirthaji’s book Vedic 

Mathematics), a completely fresh start for the study of geometry was needed. 
 
2) The paper explains why there was no reason to suppose that axioms are needed in Vedic 

geometry. 
 
3) The Vedic tradition is an oral one, which draws attention to the vital role of language and 

especially of speech in the study. (This is discussed further in the paper A Much-needed 

Innovation in Geometry, and also in Geometry for an Oral Tradition, both in the Preliminaries 

and in the Commentary, Part II, Section 3(f).)  
 
4) The word ‘Innovation’ in the title of the paper refers to treating determination of the 

foundations as a problem to be solved. Euclid did not do this and there is no reason to think that 

anyone else has thought of doing so prior to the present project. The Vedic approach has made 

a contribution here, too, as the above-mentioned ‘Innovation’ paper explains. 
 
 Note that this ‘problem to be solved’ approach was crucial to eventual success. (See Essays 3 

and 7 of the Eight Essays on Geometry for an Oral Tradition for an explanation of how the 

foundations were worked out.) 

 
* * * * * * * * * *   

Finally, two matters conclude the present paper; they are: 
 
(i) A statement of the foundations of geometry. 
(ii) An example of Euclid’s proof of one of his theorems, and the brief proof of the same theorem 

given in both The Circle Revelation and Geometry for an Oral Tradition. 

 
 

(i) THE FOUNDATIONS OF GEOMETRY 
 
These consist of the two Principles given above, plus the first three Provisions given in Geometry 

for an Oral Tradition. The three Provisions can readily be seen to be indispensable for the study: 

for remove any one of them and the study is not possible. 

 

PROVISIONS 
1. A language, in use. 

2. A means of drawing figures in a plane, using a straight edge and compasses. 

3. The ability to recognise valid reasoning. 
 

PRINCIPLES 
1. Once completed, a figure drawn in a plane at rest remains unchanged.  



2. If any two planes are in relative motion, either may be used as the standard of rest. That 

is to say, all states of rest and motion are relative.   

 

There are a few further points to be made concerning these foundations. 

 

1. Euclid takes Principle 1 for granted without mentioning it, and Geometry for an Oral 

Tradition likewise. 

 

2. Principle 2 is necessary because it is well-established that space is relative. In combination 

with Principle 1, Principle 2 also meets the need to start the sequence of Propositions off, via 

proof of the postulate used in Geometry for an Oral Tradition. 

 

3. Thus Principles 1 and 2 are necessary for the study, and so are the three Provisions (the 

indispensables). To establish that the foundations are both NECESSARY and SUFFICIENT for 

the study, we now need to show to what extent they suffice. They certainly suffice to take the 

sequence of propositions at least as far as elementary properties of s circle, as Geometry for an 

Oral Tradition shows; we cannot rule out that they suffice to take the investigation much 

further. 
 

 
(ii) TWO PROOFS OF A THEOREM 

 
Euclid’ proof of Book I Proposition 32 is given in an attachment. It shows that the angles in a 

triangle total two right angles. In Geometry for an Oral Tradition the same theorem is covered by 

Proposition B17, which states that the angles in a triangle total a half turn. The proof  is given in 

a second attachment; The Circle Revelation re-presents this proof in a more informal way. 
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